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First we briefly outline the general construction of Dp-brane models with dynamical

tensions. We then proceed to a more detailed discussion of a modified string model
where the string tension is related to the potential of (an external) world-sheet
electric current. We show that cancellation of the pertinent conformal anomaly on
the quantum level requires the dynamical string tension to be a square of a free
massless world-sheet scalar field.

1. Main Motivation

Dirichlet p-branes (Dp-branes) [1] are p+1-dimensional extended objects in

space-time which carry the end points of fundamental open strings. Their

crucial relevance in modern string theory is due to several basic properties

of theirs such as providing explicit realization of non-perturbative string du-

alities, microscopic description of black-hole physics, gauge theory/gravity

correspondence, large-radius compactifications of extra dimensions, brane-

world scenarios in particle phenomenology, etc. . For a background on

string and brane theories, see refs.[2].

In an independent recent development two of us have proposed a broad

class of new models involving Gravity called Two-Measure Gravitational

Models [3], whose actions are typically of the form:

S =

∫
dDxΦ(ϕ)L1 +

∫
dDx

√−g L2 , (1)

L1,2 = e
αφ

MP

[
− 1

κ
R(g, Γ) − 1

2
gµν∂µφ∂νφ +

(
Higgs

)
+

(
fermions

)]
. (2)
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with the standard notations: R(g, Γ) is the scalar curvature in the first-

order formalism (i.e., the connection Γ is independent of the metric gµν),

φ is the dilaton field, MP is the Planck mass, etc.. The main new ingredi-

ent appears in the first term of (1) – it is an alternative non-Riemannian

(i.e. independent of the metric gµν) generally-covariant integration mea-

sure density Φ(ϕ) built up in terms of additional auxiliary scalar fields ϕi

(i = 1, . . . , D where D is the space-time dimension) :

Φ(ϕ) ≡ 1

D!
εµ1...µDεi1...iD

∂µ1
ϕi1 . . . ∂µD

ϕiD . (3)

Although naively the additional “measure-density” scalars ϕi appear in (1)

as pure-gauge degrees of freedom (due to the invariance under arbitrary dif-

feomorphisms in the ϕi-target space), there is still a remnant – the so called

“geometric” field χ(x) ≡ Φ(ϕ)√−g
, which remains an additional dynamical de-

gree of freedom beyond the standard physical degrees of freedom character-

istic to the ordinary gravity models with the standard Riemannian-metric

integration measure. The most important property of the “geometric” field

χ(x) is that its dynamics is determined solely through the matter fields lo-

cally (i.e., without gravitational interaction). The latter turns out to have

a significant impact on the physical properties of the two-measure gravity

models which allows them to address various basic problems in cosmol-

ogy and particle physics phenomenology and provide physically plausible

solutions, for instance: (i) the issue of scale invariance and its dynami-

cal breakdown, i.e., spontaneous generation of dimensionfull fundamental

scales; (ii) cosmological constant problem; (iii) geometric origin of fermionic

families. In the very recent papers [4] it has been demonstrated that two-

measure gravity theories are of significant interest in the context of modern

brane-world scenarios, namely, a new conformally invariant brane-world

model in D =6 without (bulk) cosmological constant fine tuning has been

constructed there.

Subsequently, the idea of employing alternative non-Riemannian

reparametrization-covariant integration measures was applied in the con-

text of strings and branes theories [5, 6]. A common basic property of these

modified string/brane models is that the ratio of both integration measure

densities (the alternative versus the standard Riemannian) becomes a dy-

namical string/brane tension – an additional dynamical degree of freedom

beyond the original string/brane degrees of freedom. In particular, in ref.[6]

we systematically constructed a new class of modified Dp-brane models with

dynamical brane tension – this construction is briefly reviewed in Section

2. We have shown in [5, 6], that the dynamical nature of the string/brane
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tension leads to some new interesting physical effects such as simple mech-

anisms of confinement of “color” point-like charges (in the string case) and

of charged lower-dimensional sub-branes (in the Dp-brane case).

In Section 3 below we study in some detail the quantum properties of

a modified string model where the dynamical tension becomes related to

the potential of an external electric charge current on the string world-

sheet. We explicitly show that quantum consistency, i.e., cancellation of

the pertinent conformal anomaly, apart from the well-known restriction on

D (D =26 in the simplest bosonic case) implies that the dynamical string

tension must be a square of a free massless world-sheet scalar field.

2. Dp-Branes with Dynamical Tension

First, let us recall the standard formulation of Dp-branes given in terms of

the Dirac-Born-Infeld (DBI) action (see e.g. third ref.[2]) :

SDBI = −T

∫
dp+1σ

[
e−αU

√
− det ||Gab −Fab|| + . . .

]
, (4)

with the following short-hand notations:

Gab ≡ ∂aXµ∂bX
νGµν(X) , Fab ≡ ∂aXµ∂bX

νBµν(X) − Fab(A) . (5)

Here Gµν(X), U(X), and Bµν(X) and are the background metric, the

dilaton, and the 2-form Neveu-Schwarz, respectively, jwhereas Fab(A) =

∂aAb − ∂bAb is the field-strength of the Abelian world-volume gauge field

Aa. The dots in (4) indicate coupling to the (p+1)-form Ramond-Ramond

background gauge field which is omitted for simplicity. All world-volume

indices take values a, b = 0, 1, . . . , p and εa1...ap+1 is the (p+1)-dimensional

totally antisymmetric tensor (ε01...p = 1).

Similarly to the gravity case (1)–(3) we now introduce a modified world-

volume integration measure density in terms of p + 1 auxiliary scalar fields

ϕi (i = 1, . . . , p + 1) :

Φ(ϕ) ≡ 1

(p + 1)!
εi1...ip+1

εa1...ap+1∂a1
ϕi1 . . . ∂ap+1

ϕip+1 , (6)

and use it to construct the following new p-brane-type action :

S = −
∫

dp+1σ Φ(ϕ)
[
e−βU 1

2
ζab (Gba −Fba)+

1√
−ζ

Ω(A)
]
+

∫
dp+1σL(A) .

(7)

Here apart from (5) the following new notations are used. The (p + 1) ×
(p + 1) matrix ζab of auxiliary variables is an arbitrary world-volume 2-

tensor, ζab denotes the corresponding inverse matrix (ζacζcb = δa
b ) and
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ζ ≡ det ||ζab||. The term Ω(A) indicates a topological density given in terms

of some additional auxiliary gauge fields AI living on the world-volume:

∂Ω

∂AI
− ∂a

(
∂Ω

∂∂aAI

)
= 0 identically , i.e. δΩ(A) = ∂a

(
∂Ω

∂∂aAI
δAI

)
.

(8)

Finally, L(A) describes possible coupling of the auxiliary fields AI to ex-

ternal “currents” on the brane world-volume.

The requirement for Ω(A) to be a topological density is dictated by the

requirement that the new brane action (7) (in the absence of the last gauge-

coupling term
∫

dp+1σL(A)) reproduces the standard Dp-brane equations

of motion resulting from the DBI action (4) apart from the fact that the Dp-

brane tension T ≡ Φ(ϕ)/
√
−ζ becomes now an additional dynamical degree

of freedom (note that no ad hoc dimensionfull tension factor T has been in-

troduced in (7)). Let us particularly stress that the modified-measure brane

model (7) naturally requires (through the necessity to introduce topological

density Ω(A)) the existence on the world-volume of an additional (higher-

rank tensor) gauge field A apart from the standard world-volume Abelian

vector gauge field Aa.

Splitting the auxiliary tensor variable ζab = γab + ζ [ab] into symmetric

and anti-symmetric parts and setting ζ [ab] = 0, the action (7) reduces to the

action of the modified-measure model of ordinary p-branes [5] with Neveu-

Schwarz field Bµν and world-volume gauge field Aa disappearing and γab

assuming the role of world-volume Riemannian metric.

The most obvious example of a topological density Ω(A) for the addi-

tional auxiliary world-volume gauge fields in (7) is:

Ω(A) = −εa1...ap+1

p + 1
Fa1...ap+1

(A) , Fa1...ap+1
(A) = (p+1)∂[a1

Aa2...ap+1] ,

(9)

where Aa1...ap
denotes rank p antisymmetric tensor (Abelian) gauge field

on the world-volume. More generally we can have (for p + 1=rs) :

Ω(A) =
1

rs
εa11...a1r...as1...asrFa11...a1r

(A) . . . Fas1...asr
(A) (10)

with rank r − 1 (smaller than p) auxiliary world-volume gauge fields.

We may also employ non-Abelian auxiliary world-volume gauge fields

Aa. For instance, when p + 1=2q :

Ω(A) =
1

2q
εa1b1...aqbq Tr

(
Fa1b1(A) . . . Faqbq

(A)
)

, (11)

where Fab(A) = ∂aAb − ∂bAa + i
[
Aa, Ab

]
.
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The equations of motion w.r.t. ϕi and ζab corresponding to the

modified-measure brane action (7) read:

e−βU 1

2
ζab (Gba −Fba) +

1√−ζ
Ω(A) = M ≡ const , (12)

e−βU (Gab −Fab) + ζab

1√
−ζ

Ω(A) = 0 . (13)

Both Eqs.(12)–(13) imply:

ζab (Gba −Fba) = 2M
p + 1

p − 1
eβU ,

1√−ζ
Ω(A) = − 2M

p − 1
(14)

which when substituted in (13) give:

Gab −Fab =
2M

p − 1
eβU ζab (15)

Next we consider the equations of motion w.r.t. auxiliary (gauge) fields

AI :

∂a

(Φ(ϕ)√−ζ

) ∂Ω

∂∂aAI
+ jI = 0 , (16)

where jI ≡ ∂L
∂AI − ∂a

(
∂L

∂∂aAI

)
is the corresponding “current” coupled to

AI . These are the equations determining the dynamical brane tension

T ≡ Φ(ϕ)/
√−ζ. In deriving Eq.(16) crucial use was made of the identity

(8) satisfied by the topological density Ω(A).

In particular, in the absence of coupling of external world-volume cur-

rents to the auxiliary (gauge) fields AI Eq.(16) imply:

T ≡ Φ(ϕ)/
√
−ζ = C ≡ const (17)

Now, using Eqs.(12) and (15) it is straightforward to show that the

modified brane action (7) with L(A) = 0 classically reduces to the standard

Dp-brane DBI-action (4) :

S′
DBI = −T ′

∫
dp+1σ e−β′U

√
− det ||Gab −Fab|| , (18)

T ′ ≡ 1

2
C(2M)−

p−1

2 (p − 1)
p+1

2 , β′ ≡ p + 1

2
β , (19)

where, however, the Dp-brane tension T ′ is dynamically generated accord-

ing to (17) and (19).

For a more detailed analysis of the properties of the modified-measure

Dp-brane models we refer to [6].
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3. Conformal Anomaly and Its Impact on the Dynamical

String Tension

Now we turn our attention to a special case of (7) for p=1, i.e., a modified

string model with dynamical tension:

S = −
∫

d2σ Φ(ϕ)
[1

2
γab∂aXµ∂bXµ − εab

2
√−γ

Fab(A)
]

+ ǫ

∫
d2σ Aaεab∂bu .

(20)

Notice that the last term in Eq.(20) can be rewritten in the

reparametrization-invariant form:
∫

d2σ
√−γ AaJa , Ja ≡ ǫ

εab

√−γ
∂bu , (21)

where Ja indicates the general expression for a covariantly conserved world-

sheet electric current. Let us stress that such coupling of string degrees of

freedom to an external world-sheet electric current is natural only in the

present context of modified-measure string models due to the inevitable

appearance of the auxiliary world-sheet gauge field Aa. Let us also note that

in (21) the ordinary Riemannian world-sheet integration measure density√−γ is used unlike the modified one:

Φ(ϕ)=
1

2
εijε

ab∂aϕi∂bϕ
j , a, b = 0, 1 , i, j = 1, 2 (22)

in the main action term in (20), much in the spirit of the previously pro-

posed two-measure gravity theories [3] (cf. Eq.(1)).

Quantization of the modified string model (20) within the functional

integral framework can be performed in the standard way based on the

canonical Hamiltonian formalism for constrained systems a’la Dirac. As

already shown in the third ref.[5], the total canonical Hamiltonian HT ≡∑
A ΛAΦA is a linear combination of the following first-class constraints ΦA

(the letters π and P indicating the pertinent canonical momenta) :

πγab = 0 , T± ≡ 1

4

(P
E

± ∂σX
)2

= 0 , (23)

which are of the same form as in the ordinary bosonic string case modulo

the fact that now the string tension T ≡ E is a dynamical degree of freedom

(see last Eq.(25) below), plus the new constraints:

∂σϕiπϕ
i = 0 ,

πϕ
2

∂σϕ1
= 0 ; (24)

πA0
= 0 , ∂σ(E + ǫu) = 0 , where E ≡ πA1

=
Φ(ϕ)√−γ

. (25)
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Relations (24) imply that the auxiliary measure-fields ϕi are pure-gauge

degrees of freedom which decouple from the string dynamics. The only

remnant of the latter appears through E – the canonical momentum of

A1 according to the last expression (25), which together with the second

relation (25) tells us that E has the physical meaning of a world-sheet

electric field-strength obeying the D = 2 Gauss law.

To quantize the modified-measure string model (20) one starts with the

standard Faddeev’s functional integral:

Z =

∫
DX DP DE DA1DΛA ∆ΦΠ δ(conf. gauge)

× exp
{
i

∫
d2σ

[
Pµ∂τXµ + E∂τA1 −

∑

A

ΛAΦA

]}
(26)

where ΦA are the first-class constraints listed above (23)–(25) and ∆ΦΠ

indicates the Faddeev-Popov ghost determinant associated with the con-

formal gauge-fixing condition. In (26) and in what follows we shall skip

the insertion of vertex operators for brevity. Now performing the Gaus-

sian integrations over the canonical momenta we arrive at the following

reparametrization-invariant expression:

Z =

∫
DX Dγab DE DAa ∆ΦΠ δ(conf. gauge)

× exp
{
i

∫
d2σ

[
−E

1

2

√−γγab∂aXµ∂bXµ +
1

2
(E + ǫu)εabFab(A)

]}
(27)

Integration over the auxiliary gauge field Aa yields functional delta-function

δ
(
εab∂b(E + ǫu)

)
which in turn reduces the functional integration over E

to an ordinary integration over the overall world-sheet constant C :

Z =

∫
dC DX Dγab ∆ΦΠ δ(conf. gauge)

× exp
{
−i

1

2

∫
d2σ (C − ǫu)

√−γγab∂aXµ∂bXµ

}
(28)

Note that T ≡ C − ǫu is the dynamical string tension. Thus, integration

over string coordinates Xµ amounts to computation of the determinant of

the modified Dalembertian (or Laplace-Beltrami upon Euclidean rotation)

operator:

− 1√−γ
∂a

(
v2√−γγab∂b

)
(29)

where for later convenience we have introduced the notation v for the

square-root of the dynamical tension: v2 ≡ C − ǫu. Due to the presence
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of the latter there is an additional contribution to the well-known confor-

mal anomaly (see e.g. [7] and references therein where the “dilaton”-like

notation v = e−φ is employed) :

Z =

∫
dC Dγab δ(conf. gauge) exp

{
i

∫
d2σ

√−γ
[D − 26

96π
R�

−1R

+
D

8π

�v

v
�

−1R − b
D

4π
γab(∇a ln v)(∇b ln v)

]}
(30)

Here R denotes the usual scalar curvature for the intrinsic world-sheet met-

ric γab and � ≡ 1√−γ
∂a

(√−γγab∂b

)
is the ordinary covariant Dalembertian.

The last non-anomalous term in (30) is determined up to a regularization-

dependent constant b. Therefore, absence of conformal anomaly implies in

the present case, apart from the usual critical value for the space-time di-

mension, an additional condition on the square-root of the dynamical string

tension:

�v = 0 , v2 ≡ T = C − ǫu , (31)

i.e., the dynamical string tension must be a square of a free massless world-

sheet scalar field. Note that this condition is a dynamical constraint on the

external world-sheet electric current (21) coupled to the modified-measure

string.

Going back to the string action in (28) and taking into account relations

(31) we can rewrite it in the following simple form:

−1

2

∫
d2σ

√−γγab∂a

(
vXµ

)
∂b

(
vXµ

)
(32)

where we used the following identity for the modified Dalembertian operator

(29) :

1√−γ
∂a

(
v2√−γγab∂b

)(
·
)

= v �
(
v·

)
−

(
�v

)
v = v �

(
v·

)
(33)

due to the free masslessness of the square-root tension v. Therefore, in the

quantized modified-measure string model (20) it is the dynamically rescaled

fields X̃µ = v Xµ which describe free wave mode propagation along the

string rather than the usual string coordinates Xµ.

4. Conclusions

Replacing the standard Riemannian world-sheet/world-volume integration

measure density with an metric-independent reparametrization-invariant

one (6) in the Lagrangian formulation of string and brane models has
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significant impact on the string/brane dynamics. Consistency of dynam-

ics requires the introduction of additional auxiliary (higher-rank) gauge

fields on the world-sheet/world-volume which are absent in the standard

string/brane theories. The main new property of the modified-measure

string/brane models is that the string/brane tension appears as an addi-

tional dynamical degree of freedom which is canonically conjugated to the

auxiliary world-sheet/world-volume gauge fields. It acquires the physical

meaning of world-sheet electric field-strength (in the string case) or field-

strength of higher-rank world-volume gauge fields (in the brane case) obey-

ing the Maxwell (or Yang-Mills) equations of motion or their higher-rank

generalizations. As a simple consquence of the latter, modified-measure

string/brane models provide (already on the classical level) simple mecha-

nisms for “color” charge confinement. Furthermore, in the quantized string

context the interplay between the intrinsic conformal anomaly and the dy-

namical nature of the string tension imply an important constraint on the

form of the dynamical string tension forcing it to be a square of a free mass-

less world-sheet scalar. It is curious to note that the last property resembles

the property found in the context of the string-inspired low-energy effective

field theory in D = 10 [8] where the square of the target-space dilaton field

plays the role of a covariant integration measure density

More detailed study of the effects resulting from the new physical prop-

erties of the modified-measure string models with dynamical tension re-

ported above will be done in a separate work.
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